A Knowledge-based Risk Assessment Tool for Alert-overridden High-risk IV Drug Infusions

Wan-Ting (Kerina) Su1,2*,
Poching DeLaurentis2,
Mark Lehto1

1School of Industrial Engineering, Purdue University,
2Regenstrief Center for Healthcare Engineering, Purdue University

2017 REMEDI Spring Conference
Date: 04/20/2017
Problem

• Each alert-override IV infusion could potentially cause patient harm of various degrees

• Most analysis tools evaluate drug infusion performance by alert frequency:
 - Not consider that each alert-override infusion could cause patient harm of various degrees
 - No risk-based tool, considering likelihood of potential harm degrees, was developed

Source: https://catalyze-care.org/phi
Research Objectives and Importance

• Develop a quantitative risk assessment tool based on medical professionals’ knowledge

• This proposed tool can
 ➢ improve the existing analysis tools
 ➢ quantify the potential risk of IV harm by several commonly used, high-risk drug infusions

• Application
 ➢ help the medication safety teams efficiently highlight the clinical care areas and drugs with the highest risk of harm
Research Framework

Goal:
Develop a knowledge-based quantitative risk assessment tool

Phase I:
Create representative drug infusion scenarios
1. Obtain experts’ risk assessments
2. Create a model to predict risk of harm

Phase II:

Phase III:
1. Obtain expert’s paired-comparison assessments
2. Create AHP to calculate relative risk rankings
Explore and Classify Pump Alert Data

• Data:
 ➢ A large hospital system (REMEDI hospital member)
 ▪ Time frame: January 2010 – May 2015
 ▪ Overdose and overridden alerts

• Classification

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_i</td>
<td>Care Area (AICU, AMS)</td>
</tr>
<tr>
<td>B_j</td>
<td>Drug (Heparin, Insulin, Morphine, Propofol)</td>
</tr>
<tr>
<td>C_k</td>
<td>Drug Limit Type (Continuous, Bolus dose, BDAR)</td>
</tr>
<tr>
<td>D_{ijk}</td>
<td>Soft Max & Hard Max Drug Limits</td>
</tr>
</tbody>
</table>

Phase I: Scenario Design

Phase II: Experts’ Risk Assessment

Phase III: Experts’ Paired-Comparison Assessment
Scenario Design Structure

One set of A, B, C, D with 9 combinations of E & F

30 Scenario Types
e.g. AICU – Propofol – Continuous – Drug Limit

9 Sub-scenarios

Factors and Variables

- Factor A_i
- Factor B_j
- Factor C_k
- Factor D_l (ijk)
- Factor E₁ (ijkl)
- Factor E₂ (ijkl)
- Factor E₃ (ijkl)
- Factor F₁ (ijkl)
- Factor F₂ (ijkl)
- Factor F₃ (ijkl)

Phase I: Scenario Design

Phase II: Experts’ Risk Assessment

Phase III: Experts’ Paired-Comparison Assessment

Care Area

Drug

Drug Limit Type

Soft Max & Hard Max Drug Limit

Infusion Dose Rate/Ratio

Total Volume to be Infused (VTBI)

Scenario
Example of Scenarios and Assessment Table

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
<th>5</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Likely</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Unlikely</td>
<td></td>
<td>Default when no probability selected/marked</td>
</tr>
</tbody>
</table>

Severity of Harm

- No Harm: (C)
- Minor Harm: (D)
- Moderate Harm: (E)
- Major Harm: (F, G)
- Extreme Harm: (H, I)

Patient Information
- a 35-year-old male
- Patient Weight: 70 kg

Scenario I - Infusion Information

- Dose (Dose Rate): 56 mcg/kg.min
- Ratio = \(\frac{Dose \ (Dose \ Rate)}{Soft \ Max \ (51 \ mcg/\ kg/min)} = 1.1 \)
- Volume Rate: 0.4 mL/min
- VTBI: 5 mL [A1]
- VTBI: 53 mL [A2]
- VTBI: 100 mL [A3]

AICU - Propofol

- Soft Max: 51 mcg/kg.min
- Hard Max: 80 mcg/kg.min

Field Limit Type: Continuous Dose

Total Volume to be Infused (VTBI)
NCC MERP – Harm Degree Category

<table>
<thead>
<tr>
<th>NCC Category</th>
<th>Definition II (NCC, 2001)¹</th>
<th>Severity of Harm²</th>
</tr>
</thead>
</table>
| C | A programming error occurred that reached the patient but did not cause patient harm
Harm is defined as “any physical injury or damage to the health of a person requiring additional medical care, including both temporary and permanent injury” | No Harm |
| D | A programming error occurred that reached the patient and required monitoring to confirm that it resulted in no harm to the patient and/or required intervention to preclude harm
Monitoring is defined as “to observe or record physiological or psychological signs” | Minor Harm |
| E | A programming error occurred that may have contributed to or resulted in temporary harm to the patient and required intervention
A significant intervention is defined as “an intervention intended to relieve symptoms that have the potential to be life-threatening if not addressed” | Moderate Harm |
| F | A programming error occurred that may have contributed to or resulted in temporary harm to the patient and required initial or prolonged hospitalization
A significant intervention is defined as “an intervention intended to relieve symptoms that have the potential to be life-threatening if not addressed” | Major Harm |
| G | A programming error occurred that may have contributed to or resulted in permanent patient harm
Permanent harm is defined as “harm lasting more than 6 months, or where end harm is not known (‘watchful waiting’)” | |
| H | A programming error occurred that required intervention necessary to sustain life
An intervention necessary to sustain life is defined as including “cardiovascular and/or respiratory support (e.g., CPR, defibrillation, intubation)” | Extreme Harm |
| I | A programming error occurred that may have contributed to or resulted in the patient’s death | |

Phase I: Scenario Design

Phase II: Experts' Risk Assessment

Phase III: Experts' Paired-Comparison Assessment

Preliminary Risk Assessment Results

Source: Chang et al. (2003). Categorization, Frequency, and Cost Impact of Medication Errors
Concept of Risk Assessment Model Development

Knowledge-based Model (Compositional Data)

\[
f(x_1, \ldots, x_K; \alpha_1, \ldots, \alpha_K) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} x_i^{\alpha_i - 1},
\]

Inputs
- Risk Factor
 - X_{1i}
 - X_{2i}
 - X_{ni}

Outputs
- Harm Degree
 - No Harm
 - Minor
 - Moderate
 - Major
 - Extreme

NCC Category
- C
- D
- E
- F, G
- H, I

Phase I: Scenario Design
Phase II: Experts' Risk Assessment
Phase III: Experts' Paired-Comparison Assessment
AHP Risk Scores v.s. Experts’ Risk Assessments

Phase I: Scenario Design
Phase II: Experts’ Risk Assessment
Phase III: Experts’ Paired-Comparison Assessment

Relative Importance Variables

<table>
<thead>
<tr>
<th>factor A</th>
<th>Very Strongly</th>
<th>Strongly</th>
<th>Equally Important</th>
<th>Moderate</th>
<th>Strongly</th>
<th>Very Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analytic Hierarchy Process

Matrix-based Model (Paired Comparison Matrix)

AHP Outputs

Experts’ Risk Assessment

NCC Category

Scenario i1-i9

Inputs

Risk Factor

Option 1	Option 2	Option 3	Option 4
Count | | | |
Weighted | | | |
Rank | | | |

Option 1	Option 2	Option 3	Option 4
Count | | | |
Weighted | | | |
Rank | | | |
Vision

Frequency-based Indicator

- Alerts by Drug or Fluid
- Actions Taken by Drug or Fluid
- Alerts by Month
- Alerts Profile Pie Chart

Risk-based Indicator

\[f \left(\sum_{i} x_i w_{i,j} \right) \]

Alert Frequency

- High Priority
- Low Priority

Risk Score

- High
- Low

Input Links

Output Links
Thank you!

su33@purdue.edu